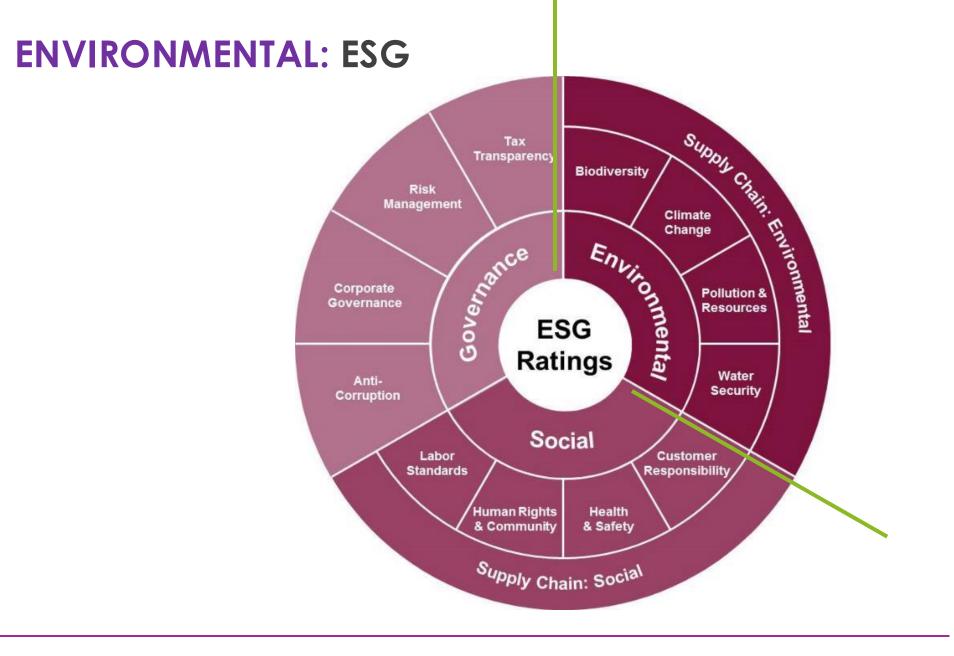


## 26 July 2024: Session 3 Achieving Net-Zero

**BIM Career Professionals Panel** 


Speaker: Thomas Fuller Development Manager, JT Ross Property Group







Africa





#### **LEGISLATIVE CHANGES TO PROPERTY REPORTING**





#### Sustainable Businesses:

## **POST COVID WORLD:**

#### In a post Covid World Tenants are focusing more closely on:

- Gross Cost of Occupation
- Employee Experience
- Efficient utilisation, functionality and operation of Commercial Office Space

#### **Developers / Investors / Landlords:**

- Reducing Gross Cost of Occupation through Design Improvements
- Creating Flexible and Adaptable Office Spaces
- Improvements to the Tenant Experience

#### **ENVIRONMENTAL:** Statutory compliance

Key Compliance driving "E"

- > SANS 10400 XA version 2
  - Includes set energy intensity targets per building class
- > City of Johannesburg/Tshwane Green Building
   By laws
  - > Aligns with SANS 10400 targets
  - > Prescribes minimum system requirements

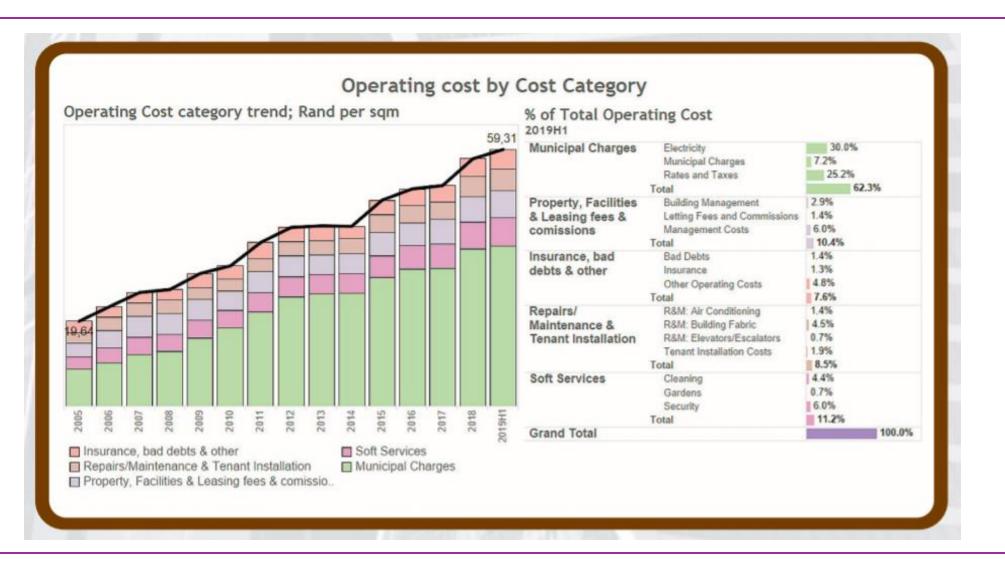
and initiatives to put in place

- Rainwater harvesting
- Solar etc.

Table 2 — Maximum annual consumption per building classification for each energy zone (Kw.h/m2/a)

| 1                                                                                                                                                                                        | 2  | 3  | 4   | 5  | 6  | 7  | 8  | 9  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----|----|----|----|----|----|
| Class of Occupancy                                                                                                                                                                       | 1  | 2  | 3   | 4  | 5  | 5H | 6  | 7  |
| G1<br>Large multi storey office<br>buildings, banks, consulting<br>rooms and similar uses with lifts<br>and energy consuming services<br>that operate on a typical daytime<br>occupancy. | 80 | 80 | 100 | 75 | 95 | 95 | 90 | 90 |




#### **ENVIRONMENTAL: SBTI**

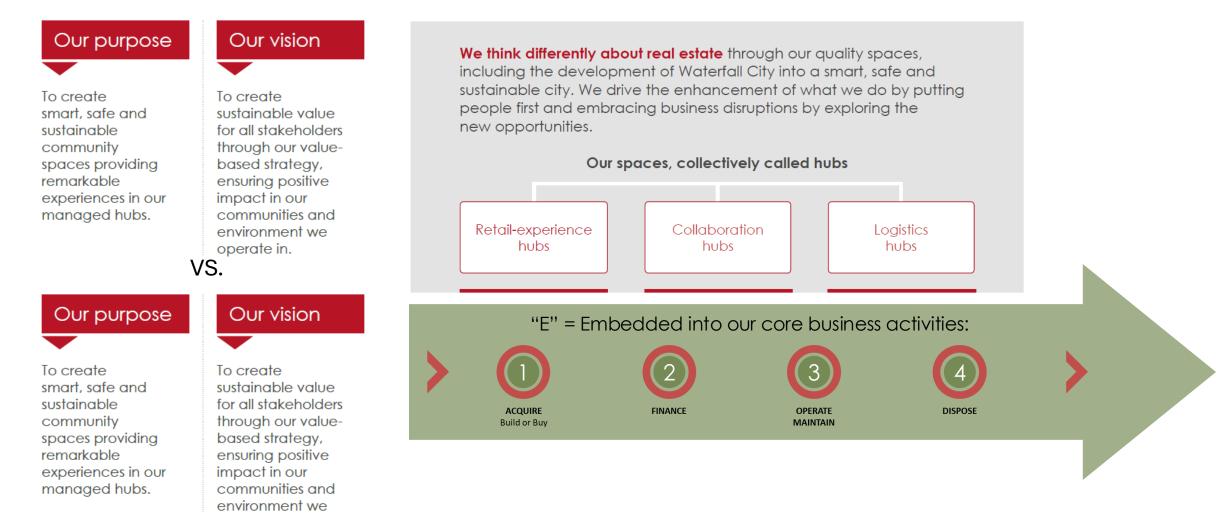
# SCIENCE BASED TARGETS & CARBON ACTION PLAN

#### **ENVIRONMENTAL:** AS A PILOT



#### <sup>10</sup> GROSS COST OF OCCUPATION






# What can't we control when it comes to gross cost of occupation:

- Rate in the Rand
- Electrical tariffs
- Water Tariffs



#### **ENVIRONMENTAL:** vs BUSINESS STRATEGY



"To be truly efficient, resilient and smart in the way we plan, design and operate a portfolio including a city, infrastructure and buildings both now and in the future."

"Year on Year improvement in consumption performance against baselines through the implementation of initiatives aimed at reducing the cost of occupancy, carbon footprint and achieving our reduction targets."

#### 13 E PLAN: 4 – POINT PLAN

The environmental plan, approved by the TSE, is built on four steps:



- Investigate feasibility of initiatives and its impact on Attacq and its stakeholders
- Implement selected initiative

Set reduction targets (short-term KPI – FY22)

During FY21, we established our externally assured baseline according to the Science Based Target Initiative methodology and in alignment with the Paris climate accord. In addition, we created an online eco-analytics dashboard to monitor our monthly results.

We will set specific targets for FY30 and FY50 that are pragmatic and drive sustainable business, for performance per property sector and across our real estate portfolio, for all elements of carbon emission generation and intensity reduction. 2 Develop key initiatives or requirements for new and existing buildings (short to long-term KPI – FY22/FY23)

Develop a cost-efficient road map of initiatives and requirements in support of our FY30 and FY50 reduction targets for energy, water and waste as the key elements to achieve our carbon emission reduction targets.  
 STEP
 Investigate feasibility of initiatives and impact (short to long-term KPI – FY23 and beyond)

. . . . . . . . . . . . . . . . . .

Implement those initiatives that are most effective. Initiatives will be assessed and ranked as follows:

- Green: low-cost day-to-day or behavioural improvements that are easy to implement.
- Yellow: medium-cost improvements that require business cases, budget and planning of implementation.
- Red: high-cost improvements including major retrofits, new buildings and infrastructure that require business cases, budget and planning of implementation. Asset management and operational budget alignment and integration with environmental plan. New development hurdle rates to inform the development of a carbon-neutral budget for investment committee approval.

#### Implementation of selected initiatives (short to long-term KPI – FY22 and beyond)

STEP

4

As our initiatives are implemented, reduction targets (carbon emission scopes 1, 2 and 3) versus actual performance will be monitored via our eco-analytics dashboard, in terms of carbon emission reduction targets, for each element (energy, water and waste).





#### REALISATION.

## **BASELINE DESIGN PARAMETERS:**

- 10 days a year above 30 degrees
- Modelling and HVAC equipment design base on Midrand Weather stats

10 days per annum exceeding 30 degrees 3 days to cool = 30 Days per annum within the Mall space



## **ACTUAL CASE:**

BAN

- 30 days a year above 30 degrees
- Modelling and HVAC equipment design base on Midrand Weather stats INSUFFICIENT TO COPE with heat load

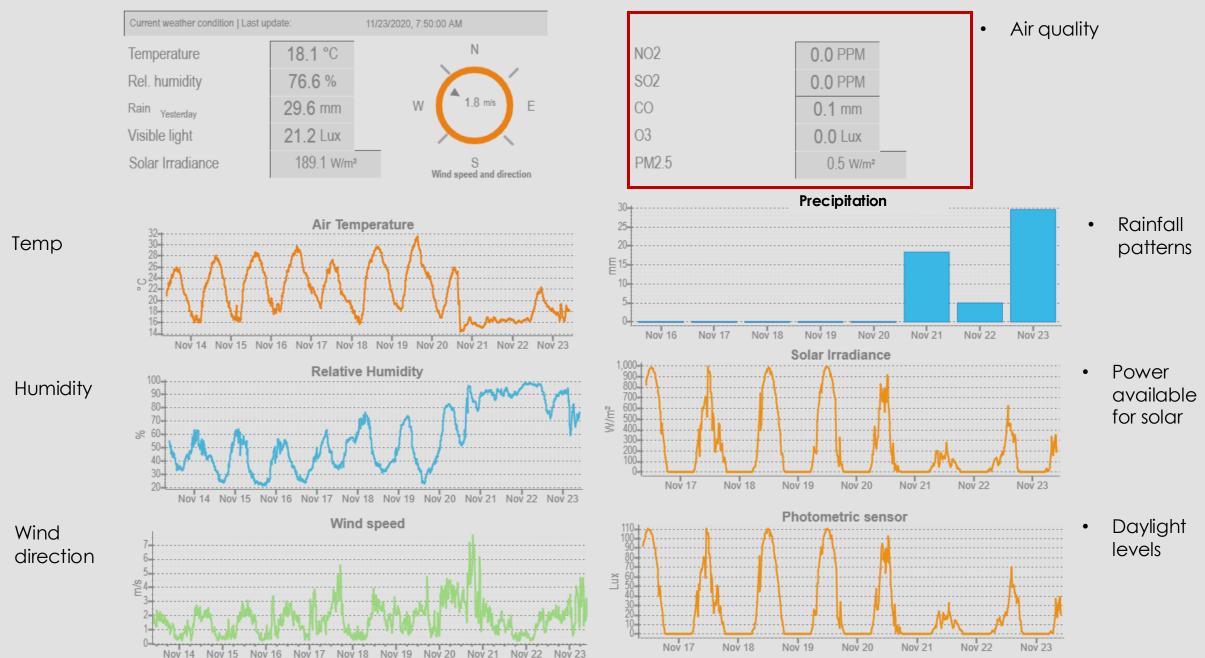
30 days per annum taking 3 days to cool = 90 Days per annum within the Mall space raising ambient temperatures to over 27 degrees internally – F&B OHS ISSUES

#### **ACTUAL CASE**:

- Capex: R11,5M

REALISATION

- Additional film reducing transparency by 25% and increased the HVAC equipment to meet revised design specification based on actual data
- Revised specification to cope with 30 days per annum taking 3 days to cool = 90 Days per annum within the Mall space returning to monitored ambient temperatures of 22 degrees internally


## **SOLUTION:**

BAN

- Build your own weather station to be able to model up to date weather information within the existing microclimate of Waterfall City







•

•

٠

16

#### **OPERATIONAL SUSTAINABILITY: Hindsight is 20/20**

BIM

Africa

Harambee

Good judgment comes from experience, and experience ~ well, that comes from poor judgment,



| Fuel saved        | 291 536 | kWh    |
|-------------------|---------|--------|
| Proposed case     | 307 557 | kWh    |
| Base case         | 599 093 | kWh    |
| Fuel consumption  | Annual  |        |
| Facility - Plan   |         |        |
| Proposed case     | 69      | kWh/m² |
| Target            | -51%    |        |
| Year              |         |        |
| Set target        | Target  |        |
| Reference year    | 2019    |        |
| Base case         | 141     | kWh/m² |
| Maximum - average | 513     | kWh/m² |
| Minimum - average | 185     | kWh/m² |
| Benchmark         | 200     | kWh/m² |
| Facility size     | 4 243   | m²     |

No. of





|     |                                          |               | Estin     | nate | ed Savings     |                   |   |           |         |
|-----|------------------------------------------|---------------|-----------|------|----------------|-------------------|---|-----------|---------|
| No. | ECM List                                 | kWh Per Annum | % Savings |      | Rand Per Annum | Ton CO2 Per Annum |   | CAPEX     | Payback |
| 1   | Energy Efficient Lighting                | 66 922        | 11.5%     | R    | 88 3 37        | 70                | R | 55 400    | 0.63    |
| 2   | HVAC Setpoint Temperature                | 2 617         | 0.8%      | R    | 3 454          | 3                 | R | -         | 0       |
| 3   | Solar Passive Roof Cooling               | 4 065         | 1%        | R    | 5 366          | 4                 | R | 35 000    | 6.52    |
| 4   | Demand Control Ventilation               | 65 148        | 10.9%     | R    | 85 995         | 68                | R | 100 000   | 1.16    |
| 5   | HVAC Economizer Retrofit                 | 5 281         | 1.23%     | R    | 6971           | 5                 | R | 100 000   | 14.35   |
| 6   | Reduce Heat Pump Operating Hour Schedule | 20 878        | 3.8%      | R    | 27 559         | 22                | R | 1 500     | 0.05    |
| 7   | Reduce HVAC Operating Hour Schedule      | 9 920         | 2.2%      | R    | 13 094         | 10                | R | -         | 0       |
| 8   | Building Plug Load Reductions            | 39 428        | 7%        | R    | 52 045         | 41                | R | 150 000   | 2.88    |
| 9   | 65kWp Rooftop Solar PV System            | 77 277        | 13%       | R    | 102 006        | 80                | R | 715 000   | 7.01    |
|     | TOTAL SAVINGS                            | 291 536       | 51%       | R    | 384 828        | 303               | R | 1 156 900 | 3.0     |

**Note:** Reduce the electrical density / m<sup>2</sup> and then add PV



#### **BASE BUILD:**

|                     |   | Usable       |   | Common Area          |    |             |
|---------------------|---|--------------|---|----------------------|----|-------------|
|                     |   | 3607         |   | 636                  | %  | of baseline |
| 4.042m2             |   | 141,19Kwh/m² |   | 141,19Kwh/m²         |    | 100%        |
| 4 243m <sup>2</sup> | R | 1,56/Kwh     | R | 1,56/Kwh             | То | tal / mnth  |
|                     | R | 794 366      | R | 140 182              | R  | 934 548     |
| Per Month           | R | 18,35/m²     | R | 18,35/m <sup>2</sup> |    |             |

#### **IMPROVEMENTS:**

|                     |   | Usable      |   | Common Area |    |             |
|---------------------|---|-------------|---|-------------|----|-------------|
|                     |   | 3607        |   | 636         | %  | of baseline |
| 4.042m2             |   | 69,18Kwh/m² |   | 69,18Kwh/m² |    | <b>49</b> % |
| 4 243m <sup>2</sup> | R | 1,56/Kwh    | R | 1,56/Kwh    | То | tal / mnth  |
|                     | R | 389 239     | R | 68 689      | R  | 457 928     |
| Per Month           | R | 8,99/m²     | R | 8,99/m²     |    |             |



#### **RENTAL SENSITIVITY: 2021 Actuals**

\*

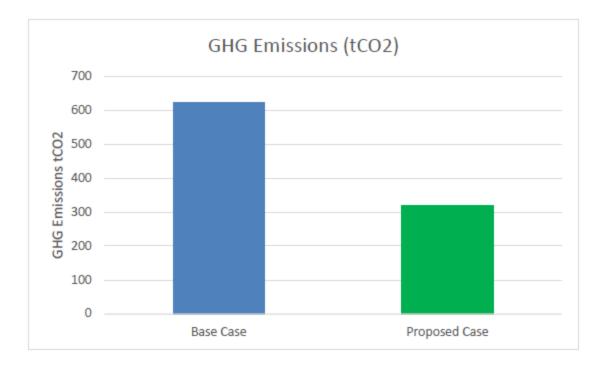
| Gross Cost of Occupation |   |          |    |           |      |                    |  |  |
|--------------------------|---|----------|----|-----------|------|--------------------|--|--|
| Description              |   | Baseline | In | provement | Revi | sed Baseline       |  |  |
| Rentals (incl Parking)   | R | 180/m²   | R  | 180/m²    | R    | 189/m²             |  |  |
| Rates and Taxes          | R | 27/m²    | R  | 27/m²     | R    | 27/m <sup>2</sup>  |  |  |
| Utilities                | R | 27/m²    | R  | 27/m²     | R    | 27/m <sup>2</sup>  |  |  |
| Electricity              | R | 18/m²    | R  | 9/m²      | R    | 9/m²               |  |  |
| Gross Cost of Occupation | R | 252/m²   | R  | 243/m²    | R    | 252/m <sup>2</sup> |  |  |
|                          |   | 100,00%  |    | 96,29%    |      | 100,00%            |  |  |
| Reduction                |   |          |    | 3,71%     |      |                    |  |  |

|   | Improvement Cost | <b>Baseline Impr</b> | ovement | Pe | r Annum | Years |
|---|------------------|----------------------|---------|----|---------|-------|
| R | 1 159 500        | R                    | 9,36/m² | R  | 476 619 | 2,43  |



#### **VALUATION PRINCIPALS: BASED REVISED NOI**

|                     | Valu  | ue (Cap 8.5%) | Valu | ue Rate / m² |
|---------------------|-------|---------------|------|--------------|
| Value As Is         | R     | 107 822 118   | R    | 25 412       |
| Improvement Value   |       | 5 607 287     | R    | 1 322        |
| Value on Completion | R     | 113 429 405   | R    | 26 733       |
| % Increase          |       | <b>5</b> %    |      |              |
|                     | Spend |               | Impr | oved Value   |
|                     | R     | 273/m²        | R    | 1 322/m²     |


\* Excl 12B & 12L : Tax Incentives, REIT accessed losses



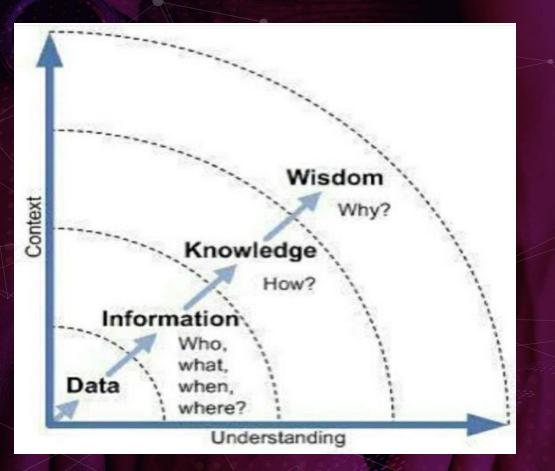
#### **ENVIRONMENTAL: GREENHOUSE GAS EMISSIONS**

#### Greenhouse Gas Emissions

Carbon emissions calculations based on Eskom grid CO2 emission factors of 1.04 kgCO2/kWh inclusive of T&D losses.






#### Net Zero

FF

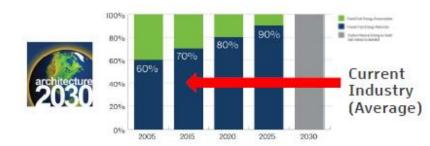
F

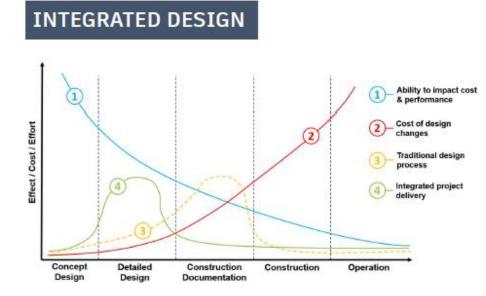
Π

#### DATA IS WISDOM: Baseline



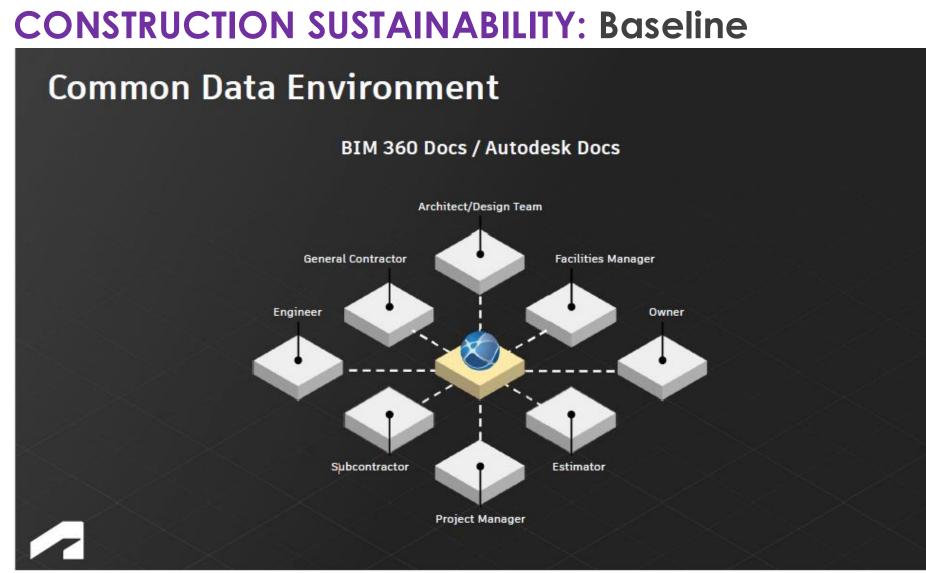
#### REAL TIME DATA DRIVEN DECISIONS



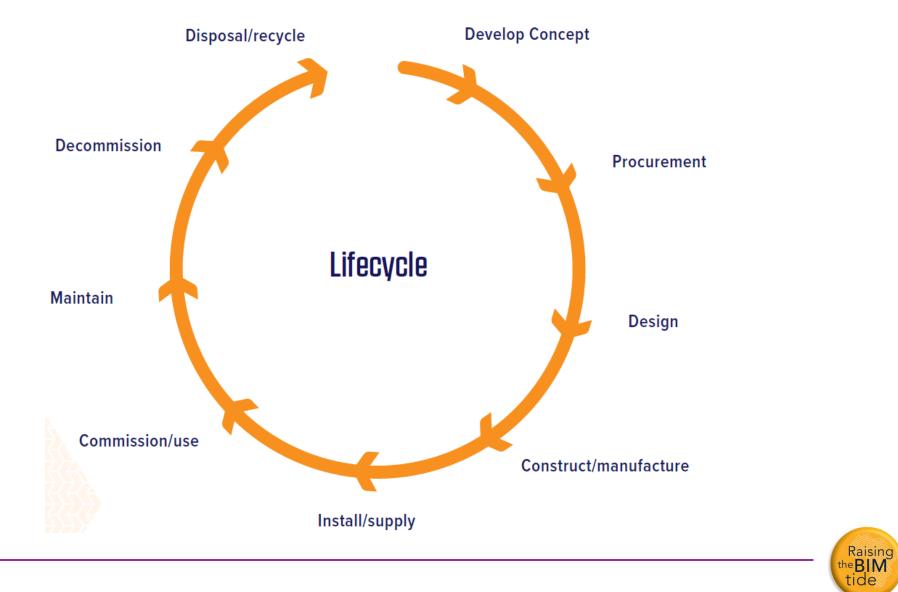


Difficulty

#### **CONSTRUCTION SUSTAINABILITY: Baseline**

## Why is Insight Important?






#### i.e. HIGHER PERFORMACE AT LOWER COST












#### WHOLE OF LIFE SUSTAINABILITY: Baseline







Lean Construction

Sustainable infrastructure & Cities



#### WHOLE OF LIFE SUSTAINABILITY: Baseline

The importance of choice of design and construction materials are being highlighted to identify, quantify, and understand the impact of the decisionmaking process which must aim to influence design decision making processes which in turn will reduce the effect of the construction phase on the environment. Choices of materials also plays a role in the development of urban heat islands in the operational phase, inappropriate decisions here can result in significant environmental impacts such as waste, carbon emissions and pollution.

Embedded Carbon: Business as usual assumed benchmark (2020) 1,000 kgCO2e/m<sup>2</sup>



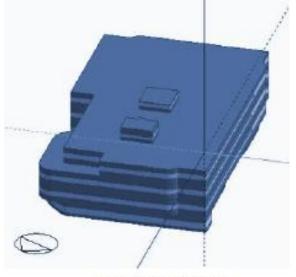
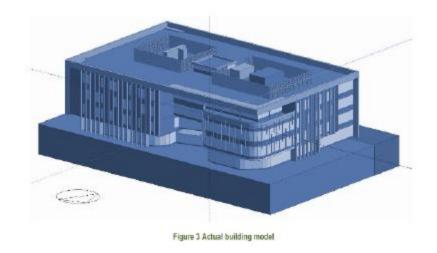
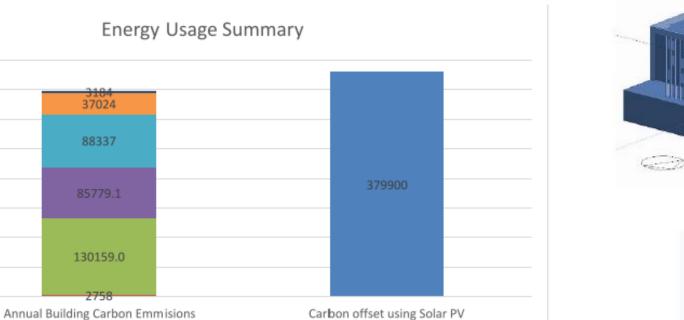
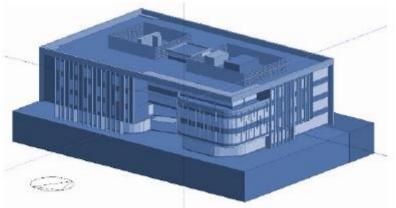





Figure 2 Notional building model



- **Passive design** strategies are features innate to the form and **design** of a **building** that channelise available natural resources to ensure thermal comfort. These climate specific approaches based on sun, wind, light and micro-climatic considerations can be employed to **design** energy efficient **buildings**.
- U-Ratings & R-Ratings
- U = 1 / R






\*Lighting number consists of Non-tenant ,Car Park and External lighting as per GSSA Energy calculator for Office v1.1

|                               |        |         |          |             |                | Misc. | Hot   |
|-------------------------------|--------|---------|----------|-------------|----------------|-------|-------|
| Energy Use                    | Solar  | Heating | Cooling  | Ventilation | Fixed Lighting | Fans  | Water |
| Annual Building kWh per annum |        | 2758    | 130159.0 | 85779.1     | 88337          | 37024 | 3184  |
| Carbon offset using Solar PV  | 379900 |         |          |             |                |       |       |

Heating Cooling Ventilation Fixed Lighting Misc. Fans Hot Water



A

Figure 3 Actual building model

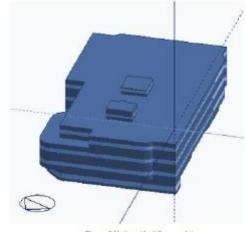



Figure 2 Notional building model

400000

350000

300000

250000

200000

150000

100000

50000

0

Solar

Annum

Annual Building kWh per



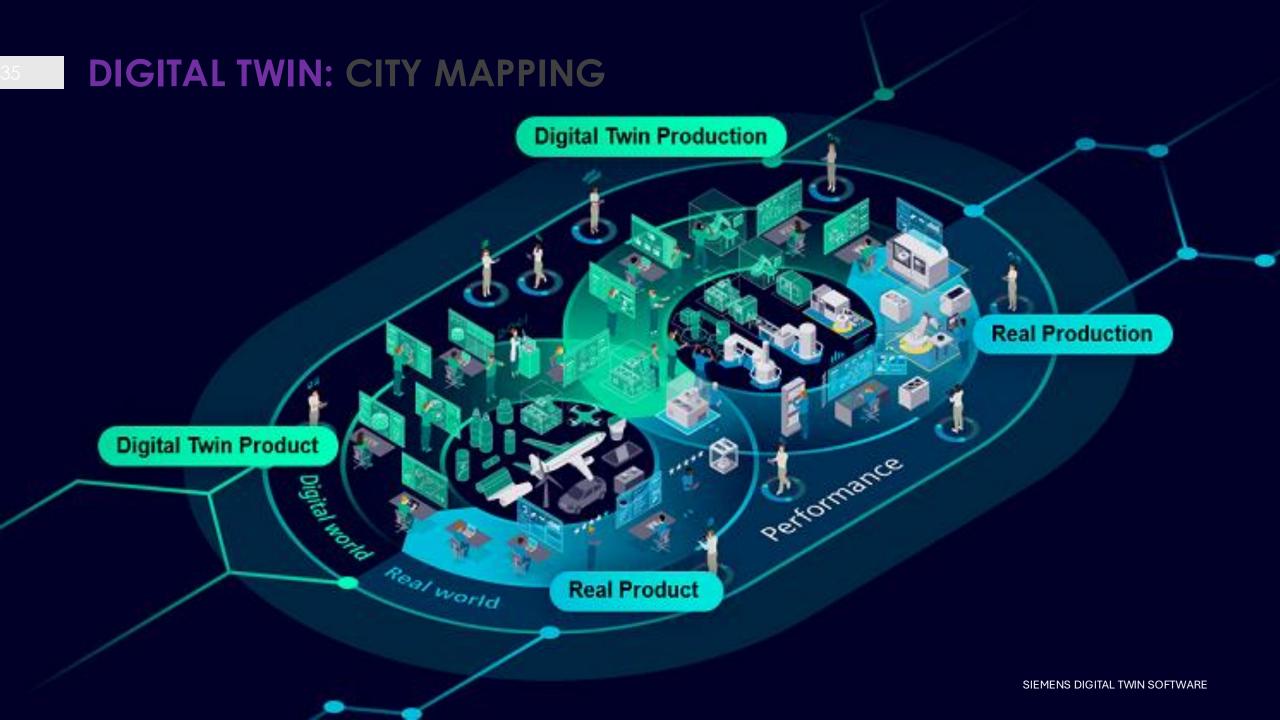
#### AUTODESK CONSTRUCTION CLOUD



|              | DESIGN                                               | PLAN                                                                                                                             | BUILD                                                                                                                                                           | OPERATE                                                         |
|--------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Capabilities | Design Authoring     Design Collaboration     Models | Coordination     Model Conditioning     Quantification     Bid Management     Qualification     Drawings - Issues - Specificatio | <ul> <li>Project Management</li> <li>Cost Management</li> <li>Quality</li> <li>Safety</li> <li>Project Closeout</li> </ul> ns - RFIs - Cost - Assets - As-Built | Facilities Maintenance     Asset Lifecycle s     Photos - Video |
| Insight      |                                                      | Dashboards - Reports                                                                                                             | - Construction IQ - Data Connector                                                                                                                              |                                                                 |



#### Annex A (normative)


#### Format of the energy performance certificate

This annex provides an example of the EPC. This format is based on the examples given in annex C of EN 15217:2007.

| A Governmen<br>Light House<br>23 Energy Str                                                                                                                                               | -                                                                            |                                 |                                             |                          | Certificate I                                                                                                           | Number 123-456                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Anytown                                                                                                                                                                                   | eel                                                                          |                                 |                                             |                          |                                                                                                                         |                                                               |
| buildings, and<br>performance of                                                                                                                                                          | indicates how n<br>f the building is                                         | nuch energy is<br>based on meas | being used<br>ured energy                   | to o<br>per              | operate this buil                                                                                                       | ce certificates for<br>Iding. The energy<br>s compared to the |
|                                                                                                                                                                                           | gy consumption p<br>Very energy e                                            |                                 | SANS 104<br>maximum<br>consump<br>occupancy | 400-)<br>ener<br>tion i  | gy of<br>n<br>s in                                                                                                      | gy performance<br>your building                               |
| e certi                                                                                                                                                                                   | В                                                                            |                                 | climatic z                                  | one                      | 1                                                                                                                       |                                                               |
| rmanc                                                                                                                                                                                     |                                                                              |                                 | <                                           | 20<br>Wh/(i              | 0 i<br>m²·a) !                                                                                                          |                                                               |
| perfo                                                                                                                                                                                     |                                                                              | E                               |                                             |                          | <                                                                                                                       | 259<br>/h/(m²-a)                                              |
| Energy performance certificate                                                                                                                                                            |                                                                              |                                 | G                                           |                          | (outsi                                                                                                                  | ergy excluded<br>de net floor area)<br>73 kWh/m²/a            |
| Building inform<br>Owner: Propert<br>Occupancy clas<br>Number of floor<br>Net floor area: :<br>Year of constru<br>Building plan a<br>Occupancy cer<br>Year of last ma<br>Climatic zone: : | ty Portfolio (Pty) I<br>ss/es: G1 – Office<br>rs: 12<br>2 730 m <sup>2</sup> | -td<br>25<br>21<br>21<br>299    |                                             | Acc<br>Acc<br>Ass<br>Dat | ministrative info<br>redited body: Er<br>reditation No: Ex<br>essor name: AN<br>e of issue: 1 July<br>id until: 31 June | nergy Auditors Inc<br>ANAS 98765<br>I Assessor<br>y 2013      |
| Carrier                                                                                                                                                                                   | From (date)                                                                  | To (date)                       | kWh                                         |                          | Net floor<br>area                                                                                                       | kWh/m <sup>2</sup>                                            |
| Electricity<br>(grid)                                                                                                                                                                     | 2012.01.01                                                                   | 2013.01.01                      | 400 000                                     |                          | 1 000                                                                                                                   | 400                                                           |
| Gas<br>Other                                                                                                                                                                              |                                                                              |                                 |                                             |                          |                                                                                                                         |                                                               |



#### ENERGY PERFORMANCE CERTIFICATION



